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Resolvent analysis predictions of energy transfer in turbulent channel flow
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Abstract

We analyse the inter-scale transfer of energy for turbulent chan-
nel flow at Reτ = 180 in a minimal flow unit. The dominant
energy-producing modes are streamwise-constant streaks with
a spanwise spacing of approximately 100 wall units. Since the
viscous dissipation for these scales is not sufficient to balance
production, the nonlinear terms redistribute the excess energy
to other scales. We compare the energy balance to predictions
from resolvent analysis and show that it does not model energy
transfer well. Nevertheless, we find that the energy transferred
from the streamwise-constant streaks can be predicted reason-
ably well by a Cess eddy viscosity profile. As such, eddy vis-
cosity is an effective model for the nonlinear terms in resolvent
analysis and explains good predictions for the most energetic
streamwise-constant streaks. Eddy viscosity does not respect
the conservative nature of nonlinear transfer and is less effec-
tive for scales which receive energy from the nonlinear terms.
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Introduction

Energy transfer plays a key role in the organisation and evo-
lution of turbulent flows. It is responsible for the multi-scale
nature of turbulence and lends insight into the self-sustaining
process [5]. Energy transfer for an individual scale is described
by the spectral turbulent kinetic energy (TKE) equation, which
contains a nonlinear term referred to as turbulent transport.
Nonlinearity poses considerable theoretical difficulties by per-
mitting inter-scale energy exchange [4]. An improved under-
standing of nonlinear interactions in turbulent flows, therefore,
is essential to improve turbulence modelling and simulation.

It is also known that linear mechanisms are important in en-
ergy transfer. These are described well by the linear operator
obtained after linearising the Navier-Stokes equations around
a suitable base flow [12]. Linear mechanisms have also been
identified in mean (time-averaged) flows by resolvent analysis
[10]. In this framework, the equations are linearised around the
mean flow to obtain the resolvent operator that maps the non-
linear terms, treated as an intrinsic forcing, to the velocity in the
frequency domain.

In this study, we investigate the extent to which energy trans-
fer is correctly modelled by resolvent analysis. To address
this question, we first examine how energy is produced, dissi-
pated, and transferred among various scales of turbulent chan-
nel flow in a “minimal flow unit” [7]. We calculate these terms
in spectral space and integrate them over the wall-normal direc-
tion. The true energy transfer from direct numerical simulation
(DNS) is compared to predictions from resolvent analysis. We
show that the agreement can be improved by adding the Cess [2]
eddy viscosity profile to the resolvent as done in many studies
[6]. Eddy viscosity serves as a model for the role of nonlinear
transfer in resolvent analysis and we quantify its contribution to
the energy balance for each scale.

Methods

The non-dimensional Navier-Stokes equations for statistically
steady, turbulent channel flow are

∂uuu
∂t

+uuu ·∇∇∇uuu = −∇∇∇p+
1

Reτ

∇∇∇
2uuu, (1)

∇∇∇ ·uuu = 0, (2)

where uuu = [u,v,w]T is the velocity in the x (streamwise), y
(spanwise) and z (wall-normal) directions and p is the pres-
sure. The friction Reynolds number Reτ = uτh/ν is defined in
terms of the friction velocity uτ, channel half height h, and kine-
matic viscosity ν. No-slip boundary conditions are applied at
the walls and periodic boundary conditions are imposed in the
streamwise and spanwise directions. The density of the fluid is
ρ and the velocities are non-dimensionalized by uτ, the spatial
variables by h and the pressure by ρu2

τ . A ‘+’ superscript de-
notes spatial variables that have been normalized by the viscous
length scale ν/uτ.

Resolvent analysis

We begin by Reynolds-decomposing equation (1), which leads
to the following equations for the fluctuations:

∂uuu′

∂t
+UUU ·∇∇∇uuu′+uuu′ ·∇∇∇UUU +∇∇∇p′− 1

Reτ

∇∇∇
2uuu′ = fff ′, (3)

where (·) and (·)′ denote a time-average and fluctuation, respec-
tively. The time-averaged velocity field is UUU = [U(z),0,0]T and
fff ′ = −uuu′ ·∇∇∇uuu′+ uuu′ ·∇∇∇uuu′ contains the nonlinear terms. Equa-
tion (3) is Fourier-transformed in time and in the homogeneous
directions x and y and recast into input-output form

ûuu(kkk) =CCC(iωIII−AAA)−1 f̂ff (kkk) = H (kkk) f̂ff (kkk), (4)

where (·̂) denotes the Fourier-transformed coefficient, kx is
the streamwise wavenumber, ky is the spanwise wavenumber
and ω the temporal frequency. The equivalent wavelengths in
the streamwise and spanwise directions are λx = 2π/kx and
λy = 2π/ky. The operators AAA, BBB and CCC represent the linear
Navier-Stokes operator, the input matrix and the output matrix,
respectively (see [?] for more details). H (kkk) is a linear oper-
ator called the resolvent that relates the input forcing f̂ff (kkk) to
the output velocity ûuu(kkk). It depends on the wavenumber triplet
kkk = (kx,ky,ω) although this dependence is omitted in what fol-
lows for conciseness. The resolvent identifies structures am-
plified by linear mechanisms and they can be obtained from a
singular value decomposition of H :

H = Ψ̂ΨΨΣΣΣΦ̂ΦΦ
∗
, (5)

where Ψ̂ΨΨ = [ψ̂ψψ1, ψ̂ψψ2, · · · , ψ̂ψψp] and Φ̂ΦΦ = [φ̂φφ1, φ̂φφ2, · · · , φ̂φφp] are or-
thogonal basis functions for the velocity and nonlinear forcing,
respectively. The diagonal matrix ΣΣΣ ranks the pth structure by
its gain σp using an inner product that is proportional to its ki-
netic energy.



Energy balance

We now derive the energy balance that must be satisfied by the
velocity field and individual resolvent modes. Equation (3) is
rewritten in index notation

∂u′i
∂t

+U j
∂u′i
∂x j

+u′j
∂Ui

∂x j
+

∂p′

∂xi
− 1

Re
∂2u′i

∂x j∂x j
=− f ′i . (6)

The indices i, j = 1,2,3 and it can be noted that U1 =U , U j = 0
if j = 2,3 and ∂Ui/∂x j 6= 0 for i = 1 and j = 3 only. The ki-
netic energy for a specific spatial scale is obtained after multi-
plying equation (6) by u

′∗
i and Fourier-transforming in x and y.

The result is integrated over z and time-averaged to arrive at the
spectral turbulent kinetic energy (TKE) equation:

−
∫ h

−h

dU
dz

û∗ŵdz︸ ︷︷ ︸
P̂(kx,ky)

− 1
Re

∫ h

−h

∂ûi

∂x j

∂û∗i
∂x j

dz︸ ︷︷ ︸
D̂(kx,ky)

−
∫ h

−h
û∗i

∂

∂x j
ûiu jdz︸ ︷︷ ︸

N̂(kx,ky)

= 0. (7)

The pressure terms vanish after integrating over the full chan-
nel. We consider the real part of equation (7), which consists
of three terms: production, viscous dissipation and nonlinear
transfer. In general, production P̂ is positive for a given scale
as perturbations extract energy from the mean flow. Viscous
dissipation D̂, on the other hand, is guaranteed to be real and
negative as it is the mechanism through which kinetic energy
is removed from the system and converted into heat. Nonlinear
transfer N̂ may be positive or negative depending on the scale
selected. If P̂> D̂, for example, then N̂ < 0 in order to achieve a
balance. In a similar fashion, if P̂ < D̂, then N̂ > 0. The integral
of N̂ over all kx and ky, nevertheless, is zero.

To obtain the energy balance for resolvent modes, equation (6)
is multiplied by u

′∗
i and Fourier-transformed in x, y and t. The

result is integrated over the wall-normal direction to obtain∫ h

−h

dU
dz

û∗ŵdz− 1
Re

∫ h

−h

∂ûi

∂x j

∂û∗i
∂x j

dz−
∫ h

−h
û∗i f̂idz = 0. (8)

In this form, the nonlinear forcing f̂ff appears explicitly in the
energy balance. Assuming f̂ff is white noise, the velocity field
can be expressed in terms of resolvent modes

ûuu =
N

∑
p=1

ψ̂ψψpσp. (9)

Substituting equation (9) into equation (8) yields

∑
p

σp

(∫ h

−h

dU
dz

ψ̂ψψ
∗,i=1
p ψ̂ψψ

j=3
p dz+

1
Re

∫ h

−h

∂ψ̂ψψ
∗,i
p

∂xxx j

∂ψ̂ψψ
i
p

∂xxx j
dz

)
+

∑
p

∫ h

−h
ψψψ
∗
pφ̂φφpdz = 0. (10)

Each term in the sum can be decoupled since the basis functions
ψ̂ψψp are orthogonal. This means that production, dissipation and
nonlinear transfer must be balanced across each resolvent mode.
For simplicity, this study focuses on the optimal resolvent mode
only, i.e. p = 1.

Eddy viscosity model

Instead of treating f̂ff as white noise, its effect can be modelled
by adding the Cess eddy viscosity profile [2] to the linearised
equations [11, 6]

νT (z)=
ν

2

(
1+
[

κ

3
(1− z2)(1+2z2)

(
1− e|z−1| Reτ

A

)]2
)1/2

+
ν

2
,

(11)

where κ = 0.426 and A = 25.4 are chosen based on a least-
squares fit to experimentally obtained mean velocity profiles at
Reτ = 2000 [1]. The eddy viscosity introduces two terms into
the energy balance

Êdd(kx,ky) =−
∫ h

−h
(νT (z)−ν)

∂ûi

∂x j

∂û∗i
∂x j

dz︸ ︷︷ ︸
V̂ (kx,ky)

−
∫ h

−h

dνT

dz

(
û∗i

∂ûi

∂y
+ û∗i

∂ŵ
∂xi

)
dz︸ ︷︷ ︸

Ĝ(kx,ky)

, (12)

where the kinematic viscosity ν has been subtracted in order to
remove the contribution of viscous dissipation D̂(kx,ky). The
remainder V̂ (kx,ky) represents additional dissipation provided
by the wall-normal varying portion of νT . The second term
Ĝ(kx,ky) is related to the wall-normal gradient of νT . The com-
bined effect of V̂ (kx,ky) and Ĝ(kx,ky) is referred to as eddy dis-
sipation Êdd(kx,ky). The metric

ε(kx,ky) =
Êdd(kx,ky)− N̂(kx,ky)

|N̂(kx,ky)|
, (13)

is the accuracy of the eddy viscosity in modelling N̂(kx,ky) for
a given scale.

Flow description
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Figure 1. Mean velocity profiles for the minimal channel (blue) and the
DNS of [8] (black).

The minimal channel flow is computed for Reτ = 180 using an
unstructured finite difference solver (see [3] for details) on a do-
main with dimensions π×π/4×2h in the streamwise, spanwise
and wall-normal directions. There are 96 and 48 equally spaced
points in the streamwise and spanwise directions, respectively,
and 128 points in the wall-normal direction on a Chebyshev
grid. The minimal channel mean profile is in good agreement
with the mean profile of [8] for most areas of the flow other
than the wake region, where the minimal channel mean profile
overshoots the one from [8]. This phenomenon stems from the
fact that the minimal domain is too small to accommodate the
largest structures which reside in the outer region. Despite this
disagreement, there is no impact on near-wall turbulence in the
buffer and viscous regions where the bulk of energy resides [7].

Results

The kinetic energy is computed for the most energetic
wavenumber pairs

Ê(kx,ky) =
1
2

(
û2(kx,ky)+ v̂2(kx,ky)+ ŵ2(kx,ky)

)
, (14)
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Figure 2. The kinetic energy Ê(kx,ky) of the most energetic wavenum-
ber pairs in the minimal channel. The area and colour intensity of the
square marker at the centre of each tile are directly proportional to the
kinetic energy.

and plotted in figure 2. The area and colour intensity of the
square marker at the centre of each tile are directly proportional
to the kinetic energy. The most energetic scale is streamwise-
constant with a spanwise width of approximately 100 wall units.
Most of the kinetic energy, futhermore, is concentrated in struc-
tures with small streamwise and spanwise wavenumbers. To
facilitate visualisation later in the paper, we choose to plot only
those wavenumber pairs that appear in figure 2 although the en-
ergy balance will be computed across all of them.

DNS energy balance

Production, dissipation and nonlinear transfer for the minimal
channel are illustrated in figure 3. For almost all wavenumber
pairs shown, production is positive as seen in figure 3(a) with
the maximum occurring for (kx,ky) = (0,8) - this will be re-
ferred to as (0,8) for brevity. The only scales where production
is negative are spanwise-constant, i.e. ky = 0. The dissipation in
figure 3(b) is negative for all scales, as expected. Unlike produc-
tion in figure 3(a), however, there is no dominant scale which
is primarily responsible for dissipating energy. In fact, it can be
observed that dissipation is significantly lower than production
for (0,8), necessitating inter-scale energy transfer to achieve an
overall balance.

The nonlinear transfer in figure 3(c) illustrates that the surfeit
of energy not dissipated by viscosity from (0,8) is redistributed
to other scales. In other words, since P̂ > D̂, nonlinear transfer
removes energy from (0,8), i.e. N̂ < 0. It can be noted that
all scales which lose energy due to nonlinear transfer are clus-
tered around low streamwise and spanwise wavenumbers. This
is consistent with the turbulence cascade in that energy from
the large-scales trickles down to smaller scales which are more
effective at dissipating energy.

For the majority of scales, P̂ < D̂. In order to achieve a balance,
therefore, they receive energy from nonlinear transfer, i.e. N̂ >
0. The largest recipients of energy through nonlinear transfer
are spanwise-constant structures. This is consistent with the
fact that production for these scales is either small or negative.
Therefore, high nonlinear transfer is needed to counterbalance
both production and dissipation. The phenomenon of energy
transfer from low streamwise, high spanwise wavenumbers to
high streamwise, low spanwise wavenumbers can be interpreted
as a transverse cascade which has been observed in other flows
such as homogeneous shear turbulence [9].

Resolvent energy balance

We compare the DNS energy balance in figure 3 to predictions

from the first resolvent mode in figure 4. Since each wavenum-
ber pair has a distribution of energetic temporal frequencies, it
is necessary to choose a particular ω. To do so, we compute the
singular values across a discretisation of ω and choose the ω that
results in the largest amplification. As one example, ω= 0 leads
to the largest amplification for (0,8). The resolvent results for
production are plotted in figure 4(a) and they are similar to the
true values in figure 3(a). The most notable difference is that
the resolvent production predicted for (0,8) is slightly larger
with respect to the other scales. In fact, it is so dominant that
production for scales such as (0,40) appear as zero.

The results for viscous dissipation are illustrated in figure 4(b).
Unlike the DNS case, the resolvent-predicted dissipation is suf-
ficient to completely counteract production for the majority of
scales considered. Since the sum of all three terms must be
zero for each resolvent mode, it follows that nonlinear transfer
is negligible for nearly all scales as seen in figure 4(c). Thus it
can be concluded that resolvent analysis can identify the scales
responsible for the bulk of production in the flow. It does not,
however, provide good predictions for nonlinear transfer.

To identify for which scales eddy viscosity can model nonlinear
transfer, the eddy dissipation is computed and displayed in fig-
ure 5(a). As expected, it is negative for all scales even though
nonlinear transfer tends to be positive outside the cluster around
(0,8). The error ε, as defined in equation (13), is thus large
for the majority of scales as seen in figure 5(b). The only scale
where ε< 1 is (0,8). Although ε> 1 for every other scale, those
where nonlinear transfer is negative such as (0,16) or (2,8)
have lower values of ε than scales where nonlinear transfer is
positive. It can be concluded that eddy viscosity is most ap-
propriate for the energy-producing scales whose excess energy
needs to be offset by additional dissipation. Eddy viscosity, at
least in its current form, is less appropriate for the scales which
receive energy from nonlinear transfer.

Conclusions

We have investigated energy transfer for low Reynolds number
turbulent flow in a minimal channel. Production for the ener-
getic scales is generally positive and the largest contribution is
generated by the near-wall streaks with a spanwise spacing of
λ+

y ≈ 100. Dissipation is negative for every scale although it
is not sufficiently large to counteract production produced by
the most energetic structures. As a result, nonlinear transfer
redistributes energy to other scales such that the net effect of
nonlinear transfer across all scales is zero. Spanwise-constant
structures are among the largest recipients of energy through
nonlinear transfer. Energy transfer in the DNS was compared
to predictions from the first resolvent mode, which also has to
satisfy a balance across production, dissipation and nonlinear
transfer. The first resolvent mode was successful in identify-
ing the main production mechanisms in the flow although it
predicted nearly zero nonlinear transfer for every scale. Non-
linear transfer was modelled by the addition of eddy viscosity,
although its quantitative accuracy was limited to the most ener-
getic mode. Refining eddy viscosity models in the future could
lead to better models for less energetic scales in the flow.
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Figure 3. Contributions of (a) production, (b) dissipation and (c) nonlinear transfer to the energy balance of each Fourier mode for the minimal channel.
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Figure 4. Contributions of (a) production, (b) dissipation and (c) nonlinear transfer from the first resolvent mode in the case of the minimal channel.
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Figure 5. (a) Nonlinear transfer modelled by eddy viscosity for the
minimal channel and (b) its error compared to the true nonlinear transfer
in figure 3(c).
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[7] Jiménez, J. and Moin, P. (1991). The minimal flow unit in
near-wall turbulence, J. Fluid Mech., 225, 213–240.

[8] Lee, M. and Moser, R. D. (2015). Direct numerical simu-
lation of turbulent channel flow up to Reτ ≈ 5200, J. Fluid
Mech., 774, 395–415.

[9] Mamatsashvili, G., Khujadze, G., Chagelishvili, G.,
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